?既然,当我们因为初始盘面太复杂而无法通过演变去寻找答案时,那为什么不去将它逐步简化呢?????我先假设第一个命题:“初始盘面点、线对称的特点,表明对先后手都是公平的。”????这个命题的表述意味着,只要盘面“点、线对称”就可以满足“初始”的要求,而非一定要双方十六个棋子全部存在。?
???我们采用逆推法,即是假设棋子很少的时候这个命题也成立。?
????????当棋子很少的时候,点、线对称的盘面并不能表明对先后手都是公平的。从而,第一个命题被证伪。??
?现在,我把第一个命题修改一下,来假设第二个命题:“有足够多的棋子的初始盘面,其点、线对称的特点表明对先后手都是公平的。”?
???注意,“足够多的棋子”是少于或者等于双方都有十六个棋子的。????要证明第二个命题的真伪,就不用再逆推了,我们可以直接看看,当双方十六个棋子全部存在而且满足“点、线对称”的条件时,有没有反例。
有足够多的棋子的初始盘面,其点、线对称的特点表明对先后手都是公平的。必然又是一个伪命题,而我们的现行棋规下的初始盘面则正好属于这个伪命题的集合。??
????由此可见,“点、线对称”并不是先后手公平的充分必要条件。我想,初始盘面除了要求“点、线对称”之外,应该还要求“均匀”。
????象棋初始盘面的发明者最聪明之处,就在于使得所有棋子在初始阶段都可以选择使用,并使得必须通过足够步数才能发挥每个棋子最大功能。他这样做的目的,就是增加对抗的步数,增加选择的可能性。???
由于存在着开局的无理棋,初始盘面就不能算是“均匀”的,对每个棋子的选择使用就不能算是公平的,也就是说,尽管象棋的每个棋子的功能和作用不一样,能力也有大小,而对于初始盘面来说,它变化的最大值应该是限制所有的棋子第一步的必然作用,使得每个棋子都可能选择使用,这才是“均匀”。
?在想到“均匀”这个词的一瞬间,我似乎是找到了判断象棋初始棋盘是否“公平”的办法,但当思考继续纵深时,一切却都变得更加复杂。????
要想证明象棋初始盘面“均匀”,有必要先假定每个棋子的作用和能力都是一成不变的。记得有位棋界前辈曾经评价过象棋每个兵种的价值,他甚至把每个兵种的攻防能力进行过综合评分:车:9分;马:分;炮:分;兵:2分;象:2分;士:2分;帅:1分。据此,我们来做两个有趣的分析:????1、为什么单车难胜士象全?分析:车是9分,而士象帅加起来正好也是9分。??
??2、为什么单车难胜炮双士?分析:车是9分,分了。????以上两个有趣的分析在表面上都看似合理,并且通过分析而得来的结果也正确,但只可惜这种例子却都是特定的,它不能说明任何问题。因为在事实上,更多的例子可以证明这种分析不合理,例如:????1、炮马必胜士象全(攻守方都是9分);
????2、单车必胜马双士(攻方9分,分);??
??3、三高兵必胜士象全(更厉害,攻方6分,守方9分)。???
?从这种分析的不合理,我们可以毫不犹豫地判断,每一个棋子的作用和能力并非是一成不变的,棋手要想最后取得最理想的盘面,就要求在初始盘面发生变化的第一步开始,选择能够使棋子的价值逐步加大的着法。??
??既然如此,还能通过是否“均匀”来推断是否“公平”吗???
??因为如果用“在初始盘面发生变化的第一步开始,选择能够使棋子的价值逐步加大的着法”的思路来推断,则最公平的初始盘面应该是使每个棋子的第一步作用力最小的盘面,也就是说,初始盘面必须尽可能地限制所有子力。这与棋理相悖。???
?这个二难逻辑最后说明了一个问题,我们目前棋规下的初始盘面必然是“尽可能地限制所有子力”和“尽可能地开放所有子力”之间的一个任意的点、线对称盘面。既然是任意的,而且这种盘面是足够多的,那么,我们试图用任何一种方法去证明它是否公平都不现实,从而,“先手便宜”、“后手便宜”以及“和棋结果”等命题也将都无法通过逻辑去证明。???
?
??第七百零八章象棋的对弈?
?棋手的对弈,较量的是对盘面的理解、对子力的调度、对结果的预期,因此,逻辑推理在较量的过程中就显得非常重要。????
下面是两个关于棋手逻辑推理能力高低的问题:
????1、一个棋手逻辑推理能力高,是否就可以代表他的棋力高?????答“是”的人多,他们说,下棋就是要讲道理,只要推算准确就立于不败之地,套路是永远打不过散手的。
????2、一个棋手逻辑推理能力低,是否就可以代表他的棋力低?????答“否”的人多,他们说,笨些没关系,只要勤背书、把所有变化背熟,就是碰到特大也不怕!????两个问题的回答看来都不错,都没有逻辑谬误。???
?因为,“推算准确”和“把所有变化背熟”分别是以上两个回答的先决条件,而由这两个先决条件所引起的推论是一致的,那就是“不败”和“不怕”。???
?但是,当我们把两个问题和两个回答联系起来的时候,就出现了矛盾:????既然第一个问题回答“是”是正确的,那么第二个问题的回答应该也是“是”才对!既然第二个问题可以答“否”,那么第一个问题的回答应该也可以答“否”。难道说,棋手的棋力高低与逻辑推理能力高低无关??
???原来,是他们的先决条件有问题。????当今棋坛,试问有谁能够“推算准确”或者“把所有变化背熟”呢?如果真能这样的话,就变成了“以子之矛攻子之盾”。而象棋的魅力,恰恰就在于永远没有人能够“推算准确”或者“把所有变化背熟”!?
???象棋的所有问题,都存在于变化之中。
?象棋到底有多少变化??
???为了表达得更直观一些,先说说围棋。??
???理论上,围棋盘有361个落子点,那么第一步就该有361种选择;落子后,盘面上只剩360个落子点,亦即第二步有360种选择;依次类推,下满361个落子点就有361的阶乘的数量的选择,总共有700多位数!大家想想,1后面跟着700多个0将会是一个多么恐怖的天文数字啊!注意,这是不顾棋理的极限算法。???
?那么,如果考虑提子、填子、打劫是否能在700多位数的基础上再增加些变化呢?回答是否定的,因为如果考虑这个问题,就要照顾棋理,围棋的变化将会更加少(当然,少也是天文数字),另外,无限循环的“提子、再填子、填了子再提掉”也是不符合棋理的。用一个简单的数学模型来说明这个问题:提一个子至少需要3到4个子力的投入,如果不能无限循环,那么盘面的子仍然是会增加的,最多是增加到满盘361个点为止。????这样看来,象棋的棋盘上只有64个格,则不管怎样计算,象棋的变化不会比围棋多吧??????但在实际上,象棋的变化不能用这种方法去计算。
????例如与围棋相比:围棋子是越下越多的,最多是下满棋盘就结束,因此围棋的变化存在着不顾棋理的极限算法;而象棋则不同,象棋子是越下越少的,但又无法知道怎样减少、何时减少、何时结束,而且在象棋子减少的时候,可以利用的空间点数却反而增加。所以,象棋的变化不能用不顾棋理的极限算法,也就无法找到其最大值。???
?原来,要想计算象棋变化的最大值,首先在逻辑上就存在矛盾:?????1、要体现象棋变化的最大值,足够多的棋子就要通过调度走动,使得每个棋子的自由度最大;?
????2、既然足够多的棋子都有最大的自由度,这盘棋就永远也下不完。????所以,象棋的变化没有其最大值,是无限的。
???说象棋的变化比围棋还多,感觉上总有点不相信。????于是去拜访了一位棋界前辈,这位前辈参与着两个协会的工作,一个是围棋协会、另一个是象棋协会。到底是围棋的变化多抑或是象棋的变化多。??
??他回答道:“我虽然没有算过,但我知道象棋的变化应该是比围棋多!”
?????他接着说:“围棋每个子都是一样的。围棋手就象个普通军官,小心地使用他每一个能力相同的士兵,这些士兵派下去之后,不是被吃掉就是永远呆在那里一动不动;象棋就不一样了,象棋手就是元帅,他可以使用每一个能力不一样的手下,他的手下有车可纵横四方、马能腾跃河溪、炮会隔山打牛,车马炮下面还有兵士相也都各司其职,子力是比围棋少,但每个子都各有变化、更各具思想性格!”
????一个凭感觉就能解释出“象棋的变化应该是比围棋多”的前辈高人,他所举的例子和比喻都相当精彩。最重要的是,他的感性的结果与实际的理性的结论是一致的。??